Aktuelle Meldungen
Spermien auf dem richtigen Weg
Forscher finden einen neuen Mechanismus der männlichen Unfruchtbarkeit
Ein wesentlicher Bestandteil aller eukaryotischen Zellen ist das Zytoskelett. Mikrotubuli, winzige Röhrchen, die aus einem Protein namens Tubulin bestehen, sind Teil dieses Zellskeletts. Zilien und Geißeln, antennenartige Strukturen, die aus den meisten Zellen unseres Körpers herausragen, enthalten viele Mikrotubuli. Ein Beispiel für eine Geißel ist der Spermienschwanz, der für die männliche Fruchtbarkeit und damit für die sexuelle Fortpflanzung unerlässlich ist. Die Geißel muss in einer sehr exakten und koordinierten Weise vorwärts schlagen, um das Fortbewegen der Spermien zu ermöglichen. Ist dies nicht der Fall, kann dies zu männlicher Unfruchtbarkeit führen. Forscher des Institut Curie in Paris, des Max-Planck-Instituts für molekulare Zellbiologie und Genetik in Dresden, des Forschungszentrum caesar in Bonn gemeinsam mit der Universität Bonn, des Institut Cochin in Paris und des Human Technopole in Mailand zeigen nun, dass eine bestimmte enzymatische Veränderung des Proteins Tubulin, die sogenannte Glycylierung, essenziell ist, damit die Spermien in einer geraden Linie schwimmen. Diese Ergebnisse lassen vermuten, dass eine Störung dieser Veränderung einigen Fällen von männlicher Unfruchtbarkeit beim Menschen zugrunde liegen könnte.
Die Zellen in unserem Körper nutzen das Erbgut, um daraus Baupläne mit Anweisungen zum Bau von Strukturen und molekularen Maschinen zu erhalten. Diese Maschinen sind sogenannte Proteine. Aber das ist noch nicht alles: Proteine können durch andere Proteine, sogenannte Enzyme, verändert werden. Dass es solche Veränderungen gibt, ist schon lange bekannt, doch erstaunlicherweise ist ihre Funktion in vielen Fällen unbekannt. So weiß man beispielsweise nicht, welche Rolle solche Veränderungen beim Protein Tubulin spielen. Tubulin bildet Mikrotubuli, lange Filamente, mit denen Gerüste in Zellen gebaut werden.
Obwohl sich Mikrotubuli in allen Zellen unseres Organismus ähneln, übernehmen sie eine Vielzahl unterschiedlicher Funktionen. Eine sehr spezialisierte Funktion von Mikrotubuli findet sich im Spermienschwanz oder Flagellum. Die Geißeln der Spermien sind für die männliche Fruchtbarkeit und damit für die sexuelle Fortpflanzung essenziell. Sie müssen sehr präzise und koordiniert umher schlagen, um es den Spermazellen zu ermöglichen, schwimmend voranzukommen. Wenn dies nicht gelingt, kann das zu männlicher Unfruchtbarkeit führen. Damit die Spermien in gerader Linie schwimmen können, ist die Veränderung des Proteins Tubulin durch Enzyme notwendig. Eine dieser Modifikationen wird Glycylierung genannt und zählt zu den bislang am wenigsten erforschten Veränderungen von Tubulin.
Gestörte Bewegungsabläufe
Wissenschaftler am Institut Curie in Paris, dem Max-Planck-Institut für molekulare Zellbiologie und Genetik in Dresden und dem Forschungszentrum caesar in Bonn untersuchten gemeinsam mit der Universität Bonn, dem Institut Cochin in Paris und der Human Technopole in Mailand die Glycylierung genauer. Sie fanden heraus, dass beim Fehlen der Tubulin-Modifikation die Bewegungsabläufe der Geißeln gestört sind. Das führt dazu, dass die Spermien meist im Kreis schwimmen. Der Erstautor der Studie, Sudarshan Gadadhar vom Institut Curie, erklärt: „Der Kern der Spermiengeißel besteht aus Mikrotubuli, zusammen mit Zehntausenden von winzigen molekularen Motoren, genannt Dyneine, die es ermöglichen, diese Mikrotubuli rhythmisch zu biegen, um Wellen für die Bewegung und Steuerung zu erzeugen. Die Aktivität dieser Dynein-Motorproteine muss exakt koordiniert sein. Wenn die Glycylierung nicht stattfand, koordinierten sich die Motorproteine untereinander nicht und wir beobachteten, wie die Spermien plötzlich im Kreis schwammen.“
Um dies herauszufinden, arbeiteten die Autoren der Studie mit einer speziellen Art Maus, der die genetischen Baupläne für die Enzyme fehlen, die Mikrotubuli glycylieren. „Wir konnten funktionelle Defekte an Spermien von Mäusen beobachten, denen die Glycylierung fehlte, was zu einer Verminderung der Fruchtbarkeit führte. Da Mäuse für ihre hohe Fruchtbarkeit bekannt sind, könnte ein ähnlicher Defekt beim Menschen zu männlicher Sterilität führen“, so Carsten Janke vom Institut Curie und einer der Koordinatoren der Studie.
Mutation beeinträchtigt koordinierte Aktivität
Um herauszufinden, warum das Fehlen der Glycylierung zu einer gestörten Bewegung der Spermien und damit zu Unfruchtbarkeit führt, verwendete das Team Kryo-Elektronenmikroskopie, um die molekulare Struktur des Flagellums und seiner molekularen Motoren sichtbar zu machen. Die Analyse der mutierten Spermiengeißeln ergab, dass die Geißeln zwar korrekt aufgebaut waren, die Mutation aber die koordinierte Aktivität der axonalen Dyneine – der Motoren, die das Schlagen der Geißel antreiben – beeinträchtigte. Dies erklärt, warum Spermazellen in ihrer Schwimmbewegung beeinträchtigt sind.
Warum ist diese Entdeckung so wichtig? Die anderen Koordinatoren der Studie, Gaia Pigino vom Max-Planck-Institut für molekulare Zellbiologie und Genetik und der Human Technopole, und Luis Alvarez vom Forschungszentrum caesar, fassen zusammen: „Diese Studie zeigt, wie wichtig die Glycylierung für die Steuerung der Dynein-Motoren des Flagellums ist. Sie ist ein Paradebeispiel dafür, wie Mikrotubuli-Modifikationen die Funktion anderer Proteine in Zellen direkt beeinflussen. Unsere Ergebnisse liefern den direkten Beweis, dass Mikrotubuli eine aktive Rolle bei der Regulierung grundlegender biologischer Prozesse spielen, ermöglicht durch einen Code von Tubulin-Modifikationen.
Zudem zeigt die Studie einen neuen Mechanismus, der zu männlicher Unfruchtbarkeit führen kann. Da die Spermiengeißeln nur eine von vielen Zilien-Arten in unserem Körper sind, denken wir, dass eine ähnliche Tubulin-kodierte Regulation bei verschiedenen Zilien-bezogenen Funktionen wichtig ist. Daher ermöglicht unsere Arbeit ein tieferes Verständnis verschiedener Krankheiten, wie Entwicklungsstörungen, Krebs, Nierenerkrankungen oder Atem- und Sehstörungen.“
Zitiert nach einer Pressemitteilung der Max-Planck-Gesellschaft vom 07.01.2021